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Instability behaviour of a gyropendulum subjected to white noise vertical support motion
is examined. Conditions for almost-sure asymptotic stability are obtained explicitly.
A stochastic averaging procedure is employed to evaluate the maximal Lyapunov exponent.
The sign of this exponent determines the instability behaviour of this system. Closed-form
expressions for the instability conditions obtained in this study are employed to predict the
minimum level of damping required to ensure almost-sure asymptotic stability.
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1. INTRODUCTION

A gyropendulum forms an essential component of navigational instruments for providing
accurate vertical reference or arti"cial horizon. Other devices such as a simple pendulum
and bubble levels become totally unsuitable for this purpose since they su!er from e!ects
due to support motion. In the case of a gyropendulum, however, a considerable amount of
directional stability is provided by a spinning rotor, hence resulting in su$ciently accurate
measurements. It has been shown that examination of stability and resonance behaviour
plays a signi"cant role in the design of vibration isolators for supporting the gyropendulum
and the design of the gyropendulum itself [1, 2].

Motion of a gyropendulum due to steady support acceleration as well as horizontal
harmonic excitation is well understood and has been well documented by Arnold and
Maunder [1], and Krishnan and Maunder [3]. Experimental investigation to con"rm this
behaviour has been performed by Krishnan and Maunder [3]. Resonant behaviour at
well-de"ned frequencies of excitation which correspond to theoretically predicted
precession as well as nutational frequencies has been examined. Subsequently, Krishnan [2]
considered a vertical harmonic support excitation on a gyropendulum in V-con"guration
and established conditions for instability in a closed form. He further showed that primary
parametric instabilities were associated with frequencies close to a nutational frequency of
the system. In the above studies, the vertical support motion was considered to be
sinusoidal. In reality, however, some random #uctuation over a wide band of frequencies
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will be present (see, e.g., reference [4]). Investigation of the e!ect of this form of #uctuation
on the instability behaviour of a gyropendulum is the prime intent of the present study.

In order to examine the instability behaviour of such a system, methods based on
a stochastic framework is essential. Namachchivaya [4] established explicit instability
conditions in the mean square sense using a stochastic averaging procedure. In this study,
the amount of damping required to ensure stability of the response amplitude variance was
found to be dependent on the excitation spectrum near certain critical frequencies. Also, as
a special case, conditions for instability for the case of white-noise excitation was obtained.
In general, moment stability conditions are found to be too conservative when compared
with conditions for sample or almost-sure stability. The present paper, therefore,
concentrates on establishing almost sure stability conditions which have not been obtained
previously.

Equations which describe the motion of a gyropendulum in a double gimbal V-
arrangement [2] subjected to randomly varying pendulous sti!ness are considered in the
present investigation. The excitation is considered to be represented by a white-noise
process. The equations of motion represent the motion of a linear gyroscopic system with
randomly varying sti!ness. In the present investigation, a stochastic averaging procedure
suggested by Khas'minskii [5] will be employed.

Stated brie#y, the stochastic averaging procedure replaces the given set of equations by
an approximate set of Ito( equations valid under certain conditions. Since it is known that
solutions of Ito( equations are di!usive Markov processes, methods available in the theory
of Markov processes can be employed to obtain approximate response statistics of the
system. Explicit asymptotic expressions developed for the largest Lyapunov exponent are
used in the determination of stability. It is known that Lyapunov exponents characterize the
average exponential growth rates of the response of dynamical systems for large values
of time (see, e.g., reference [6]). The trivial solution which corresponds to the
equilibrium con"guration of a dynamical system is stable or unstable with probability
1 (w.p.1) according to whether the largest Lyapunov exponent is negative or positive. Thus,
the vanishing of the largest Lyapunov exponent gives the boundary of stochastic stability
w.p.1.

Explicit stability conditions are developed when the excitation is a white noise. These
conditions provide an estimate of the amount of damping necessary to ensure stability for
a given level of excitation. Previously established conditions for mean square stability [4],
when compared with the conditions for sample stability established in the present
investigation, are found to be conservative. The conditions developed in the present study
will, therefore, aid more e$cient design of a gyropendulum and support mechanisms.

2. EQUATIONS OF MOTION

For the purpose of the present analysis, a gyropendulum in V-con"guration as illustrated
in Figure 1 is considered. In this double-gimbal arrangement, the spinning rotor is
suspended from the inner gimbal. In order to study the stability behaviour of the
gyropendulum about the equilibrium con"guration, the equations representing the motion
of the pendulum about this con"guration are considered. This motion may be represented
by the generalized co-ordinates h

1
,h

2
which represent, respectively, the motion of the outer

gimbal with respect to an inertial frame OXYZ and the motion of the inner gimbal about the
y-axis "xed to the outer gimbal. When the support is excited by a random acceleration f (t),
the pendulum experiences an inertial force proportional to f (t). In the case of practical
instruments, angles h

1
, h

2
will be small and the motion of the gyropendulum under this



Figure 1. A gyropendulum in a V-con"guration.
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condition is governed by the following equation (see, e.g., references [1, 4]):
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In equation (1), M, G represent the mass and the gyroscopic matrices, respectively, while
D denotes the damping matrix. Matrices K, K

1
are the sti!ness matrices associated with the

system and the excitation respectively. The dissipative forces have been assumed to be of the
viscous type in the present formulation. The rotor moments of inertia about the axis of
rotation and about any axis perpendicular to Oz are C, A, respectively, while the equivalent
inertias A

0
, B

0
are composed of the gimbal inertias and rotor inertias to give A

0
"A#B@,

B
0
"A#A@#AA. The quantities B@ and A@ represent the moments of inertia of the inner

gimbal about the rotor principal axes Oy and Ox, respectively, while AA stands for the
moment of inertia of the outer gimbal about the outer axis OX. The quantity k stands for
the pendulous sti!ness mgl and n denotes the rotor spin speed while k

1
denotes the intensity

of the stochastic excitation f (t).
Upon letting Q"M~1@2q where q represents a vector with new generalized co-ordinates
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, and premultiplying the resulting matrices by M~1@2 the equations of motion become

qK
1
!2cq5

2
#d

11
q5
1
#k2

11
[1#k f (t)]q

1
"0,

(2)

qK
2
#2cq5

1
#d

22
q5
2
#ok2

11
[1#k f (t)]q

2
"0,



804 S. F. ASOKANTHAN AND S. T. ARIARATNAM
where
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and k represents the amplitude of the stochastic sti!ness #uctuation resulting from the
random support motion of the gyropendulum. The dissipative forces have been assumed to
be of the viscous type in the present formulation.

These equations represent the motion of a linear gyroscopic system with stochastically
varying sti!ness. It may be observed that the trivial solution of equation (2) corresponds to
the equilibrium or operating state of the gyropendulum (q

i
"0, q5

i
"0, i"1, 2). Also, for

such a system, if the excitation f (t) is periodic, instability is known to occur when the
excitation frequency is in the neighbourhood of the frequencies 2u

1
/r, 2u

2
/r and

(u
1
#u

2
)/s where r, s"1, 2,2 . The present analysis deals with the case when the

excitation is a random function of time. In order to seek an approximate analytical solution,
the spectral density of the stochastic #uctuation f (t) is assumed to be of the same order of
smallness as the damping coe$cients d

1
, d

2
. In this study, the excitation will be assumed to

be Gaussian white noise with zero mean. Under these conditions, a method of stochastic
averaging [7] will be employed to study the almost-sure asymptotic stability of the above
system represented by equation (2).

3. AMPLITUDE-PHASE EQUATIONS

In order to apply the method of stochastic averaging, it is "rst necessary to transform the
generalized co-ordinates and velocities to amplitude and phase variables a, / via the
transformation
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In equations (3) and (4) the undamped natural frequencies u
1

and u
2

of the unperturbed
system are given by the expressions
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Use of transformation (3) and the method of variation of parameters yields the following
equations in the amplitude and phase variables:
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It may be noted from equations (6) that the amplitude and phase equations for the two
modes are coupled. In the sequel, since the right-hand sides of equation (6) are
homogeneous in a

1
, a

2
and of degree one, to study the stability behaviour of solutions of

equation (6), a procedure developed by Khas'minskii [8] may be employed to derive an
expression for the largest Lyapunov exponent of the amplitude process [9]. It is known that
Lyapunov exponents characterize the average exponential growth rates of the response of
dynamical systems for large values of the time t (see, e.g., reference [6]). The trivial solution
which corresponds to the equilibrium con"guration of a dynamical system is stable or
unstable with probability 1 (w.p.1) according to whether the largest Lyapunov exponent is
negative or positive. Thus, the vanishing of the largest Lyapunov exponent gives the
boundary of stochastic stability w.p.1.

To this end, a further logarithmic polar transformation of the form
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is applied, where b
1
, b

2
'0 are to be chosen suitably. It may be pointed out that in order to

apply the procedure developed by Khas'minskii [5], stochastic di!erential equations must
be obtained in the Ito( form. For this purpose, appropriate stochastic di!erential equations
are "rst obtained in the Stratonovich form using the rules of ordinary calculus and these
equations are then transformed to the Ito( form. The resulting stochastic di!erential
equations in the Stratonovich form are
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where= denotes the standard Wiener process which is the integral of a white-noise process
f (t) and l stands for the processes o, h, /
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2
. The drift terms m( o, m( h, m(

(1
, m(

(2
and

the di!usion terms p( o, p( h, p(
(1

, p(
(2

, that are associated with the above Stratonovich form
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The drift terms mo, mh, m(1
, m
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and the di!usion terms po, ph, p(1

, p
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which correspond to
the associated Ito( equations may be evaluated by adding the so-called Wong and Zakai
correction terms to the previous drift terms as follows:
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It may be observed that all of the above coe$cients are functions of h, /
1
, /

2
only and do

not depend on the o process. Since the solutions of Ito( stochastic di!erential equations are
Markov di!usion process (see, e.g., reference [7]), the processes h(t), /
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2
(t) which are

independent of the process o are governed by a joint stationary probability density function
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4. METHOD OF STOCHASTIC AVERAGING

The solution of the above partial di!erential equation in the probability density function
pe is not easily obtainable in a closed form in general. A solution in a closed form is essential
for formulating the maximum Lyapunov exponent which characterizes the sample stability
of the system under investigation. To this end, an approximate analysis based on the
method of averaging will be employed. In order to get approximate solutions it is necessary
to make the assumption that the damping coe$cients d

1
, d

2
and the intensity of the

excitation process f (t) are small, such that d
1
, d

2
"O (e) and k("O(e1@2), 0(e(1, so that

the coe$cients of the Fokker}Planck equation are of the same order of smallness.
A theorem due to Khas'minskii [5] may now be used to simplify equation (12) and obtain
solution valid in the "rst approximation. Stochastic averaging is performed for coe$cients
of the Fokker}Planck equation rather than for original SDE. Khasminskii [5] showed that
the "nal results are the same using the above two averaging approaches. In this procedure,
the coe$cients of equation (12) are averaged with respect to explicitly appearing time only.
According to this rule, if the averaging operator

M
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is employed in equation (12), the following time-averaged Fokker}Planck equation for
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is obtained. The averaged coe$cients m6 h, m6
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In obtaining equation (13), account has been taken of the fact that u
1
Ou

2
. It is known

that for the present system, the natural frequencies are always unequal when the rotor is
stationary. Further, it has been shown that the smaller frequency gets smaller and the larger
gets larger as the rotor spin speed increases (see, e.g., papers by Krishnan [2, 3]). It may also
be remarked that the convergence of the exact solution pe (h, /

1
, /
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) to the averaged solution

is in the weak sense. The solution of the equation (13) satisfying the periodicity condition
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will be independent of /
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and C is a constant to be determined from the normalization condition [10]. Using
equations (14), (15) and (18) and performing the integration in equation (19) an expression
for the probability density function p(h) can be obtained. Now, the maximal Lyapunov
exponent of the present system can be evaluated from the ItoL stochastic di!erential equation
which governs the evolution of the amplitude process (see e.g., reference [10]). Further, for
the purpose of a closed-form evaluation of the maximum Lyapunov exponent, the mean
and the drift coe$cients mo, mh, p6 2h may be expressed in the form
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process f (t) is represented by S. Also, in obtaining equation (20), as stated earlier, the
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the above simpli"ed form for equation (20). It is known that, for the ItoL system of equations
(13), the largest Lyapunov exponent is
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It has been shown by Ariaratnam and Xie [10] that the expression for the largest
Lyapunov exponent may be evaluated, for the case K'D, as
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!4o,

employing the expression for the invariant density p(h) and equation (22). Expressions (23)
and (24) can be further reduced using equations (21). The largest Lyapunov exponent may
be shown to be, for the case K'D:
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and for the case K(D:
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. (26)

Expressions (25) and (26) which directly relate the top Lyapunov exponent to the system
parameters in a closed form can be used to determine the almost-sure asymptotic stability of
the present system. It is known that the system is asymptotically stable only if the top
Lyapunov exponent j is negative. For the system under consideration, these expressions are
employed to examine the stability in the following section.

5. NUMERICAL RESULTS

In this section, the analytical "ndings presented in the previous sections are applied to
a typical gyropendulum whose support is subjected to a vertical white-noise acceleration.
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The dimensions and the speed selected conform to the experimental pendulum developed
by Krishnan [2]. Also, in order to study the e!ects of the sti!ness ratios on the stability
behaviour, two other variations of this pendulum has been considered in the present study.
The parameters of the experimental gyropendulum are

mass m"0)866kg,

length l"70mm,

moment of inertia C"0)278]10~3kg m2,

moment of inertia B
0
"4)760]10~3kgm2,

moment of inertia A
0
"5)425]10~3kgm2.

The natural frequencies u
1

and u
2

vary with the speed parameter c in accordance with
equation (5) and expressions (25) and (26) are used for evaluating the maximal Lyapunov
exponent j as a function of the rotor spin speed parameter c. Figure 2 provides the graphical
representation of conditions for instabilities which correspond to the condition j'0 where
expressions (25) and (26) for the top Lyapunov exponent j has been employed. The shaded
regions shown in the "gure indicate the instability regions.

In order to illustrate the applicability of the analytical results of the present analysis, three
di!erent inertia ratios have been considered. These values were chosen to study the stability
behaviour for inertia ratios in the ranges close to unity, greater than unity and less than
unity. The curve for the parameter values with o"1)14 correspond to the experimental
pendulum. In all three cases, the curves are composed of two parts associated with the
Figure 2. Instability regions.
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conditions K(D and K'D as shown in Figure 2. All three curves illustrate that minimum
values of damping to ensure asymptotic stability under white noise support excitation may
be predicted using expressions (25) and (26). The curves also show that in each case there is
a value of rotor speed parameter c at which a maximum amount of damping is required to
ensure stability. It may also be observed from this "gure that for higher values of o, higher
damping values are required to ensure asymptotic stability. The speed parameter that is
associated with the maximum damping tends to be larger for sti!ness ratios that are either
larger or smaller than unity.

Explicit conditions for instability behaviour of the gyropendulum evaluated in this study
as demonstrated above, can be employed to facilitate e$cient designs for the gyropendulum
and the associated support structure. The almost sure stability conditions obtained in this
study would help attain more e$cient designs, since it is known that the use of moment
stability conditions which were obtained in previous studies would result in more
conservative designs.

6. CONCLUSION

Instability behaviour of a gyropendulum under vertical white noise support acceleration
is examined by explicitly evaluating the maximal Lyapunov exponent. Methods based on
a stochastic averaging procedure are employed for this purpose. Closed-form expressions
obtained for the maximal Lyapunov exponent provide means of ascertaining the almost
sure asymptotic stability for any set of system parameters and excitation levels. They
provide a minimum level of damping required to ensure stability. The conditions for almost
sure asymptotic stability conditions obtained are more accurate than the mean square
stability conditions obtained previously and hence will lead to more e$cient design of
a gyropendulum and the associated support structures.
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